Low Loss Cable Assemblies

HD-TECH's low loss cable assemblies provide the highest level of electrical performance for applications requiring extremely low attenuation over a broad frequency range. By combining silver-plated copper center conductor, expanded PTFE tape dielectric, aluminum polyester or polymide tape, silver-plated copper outer braid, and FEP jacket, these low loss cable assemblies achieve outstanding electrical characteristics to 40 GHz . Available in custom lengths with outer cable diameters of 0.195 and 0.335 in, HD-TECH's low loss cables feature custom connectors with rugged stainless steel solder clamp construction for optimum reliability\&performance.

For example, HD-TECH's low loss cable assemblies with 0.195 -in, outer diameter (LL142) minimize attenuation to typically $0.082 \mathrm{~dB} / \mathrm{ft}$ at $1 \mathrm{GHz}, 0.250 \mathrm{~dB} / \mathrm{ft}$ at 10 GHz , and $0.360 \mathrm{~dB} / \mathrm{ft}$ at 18 GHz . With a minimum bend radius of 1 in ., these low loss cable assemblies can handle 720 W CW input power at 1 GHz and 220 W CW input power at 10 GHz , with outstanding VSWR performance. For even less loss, cable assemblies with 0.335 -in outer diameter (LL335) achieve typical attenuation of $0.048 \mathrm{~dB} / \mathrm{ft}$ at $1 \mathrm{GHz}, 0.17 \mathrm{~dB} / \mathrm{ft}$ at 10 GHz , and $0.22 \mathrm{~dB} / \mathrm{ft}$ at 18 GHz . These cable assemblies feature a minimum bend radius of 1.7 in and can handle 1800 W CW input power at 1 GHz and 600 W CW input power at 10 GHz . Both sizes of cable assemblies offer shielding effectiveness of greater than 95 dB with low coefficient of expansion over a wide temperature range of -55 to $+200^{\circ} \mathrm{C}$ to ensure that attenuation and phase performance remains stable over time and temperature.

HD-TECH's hyperfrequency low loss cable assemblies are available with a wide range of connector choices, including SMA, Type N, and TNC connectors.

Cabling specifications :

Feel free to contact us for any inquiries about HD-TECH, our products, members and tailor-made services, request for quote, shipping, stock checking, ect... See our complete details on next page.

Construction:

Center Conductor: Solid silver plated copper
Dielectric: Expanded PTFE tape
Inner Braid: Flat silver plated copper strip
Inter layer: Aluminum polyester or polyimide tape
Outer Braid: Round silver plated copper
Jacket: FEP, translucent colors, solid colors or clear
Operating temperature $-55+200^{\circ} \mathrm{C}$
Velocity of Propagation 80%
Impedence 50 Ohms
Capacitance $25.0 \mathrm{pF} / \mathrm{ft}$
Shielding Effectiveness <-95 dB

Center conductor diameter Dielectric diameter Diameter over inner braid Diameter over interlayer Diameter over outer braid Overall diameter

Weight(lbs/mft)
Bend radius
Attenuation ($\mathrm{dB} / 100 \mathrm{ft}$)
400 MHz
1 GHz
2 GHz
3 GHz
5 GHz
10 GHz
18 GHz
Cut-off frequency (Ghz)

LL120	LL160	LL142	LL235	LL335
$.0285^{\prime \prime}$	$.0403^{\prime \prime}$	$.051^{\prime \prime}$	$.057^{\prime \prime}$	$.089^{\prime \prime}$
$.080^{\prime \prime}$	$.110^{\prime \prime}$	$.145^{\prime \prime}$	$.160^{\prime \prime}$	$.250^{\prime \prime}$
$.086^{\prime \prime}$	$.116^{\prime \prime}$	$.152^{\prime \prime}$	$.170^{\prime \prime}$	$.258^{\prime \prime}$
$.092^{\prime \prime}$	$.122^{\prime \prime}$	$.158^{\prime \prime}$	$.175^{\prime \prime}$	$.264^{\prime \prime}$
$.108^{\prime \prime}$	$.140^{\prime \prime}$	$.174^{\prime \prime}$	$.191^{\prime \prime}$	$.284^{\prime \prime}$
$.120^{\prime \prime}$	$.160^{\prime \prime}$	$.195^{\prime \prime}$	$.235^{\prime \prime}$	$.335^{\prime \prime}$
17	21	44	48	100
$0.6^{\prime \prime}$	$0.8^{\prime \prime}$	$1.0^{\prime \prime}$	$1.2^{\prime \prime}$	$1.7^{\prime \prime}$
Typ / Max	$\mathbf{T y p} / \mathbf{M a x}$	Typ $/ \mathbf{M a x}$	$\mathbf{T y p} / \mathbf{M a x}$	$\mathbf{T y p} / \mathbf{M a x}$
$9.0 / 12.0$	$6.4 / 7.1$	$5.2 / 6.5$	$4.6 / 5.0$	$2.4 / 3.5$
$14.6 / 18.0$	$10.2 / 11.2$	$8.2 / 10.0$	$7.4 / 8.0$	$4.8 / 5.5$
$21.0 / 25.0$	$14.6 / 16.0$	$11.3 / 14.0$	$10.6 / 11.4$	$6.8 / 7.8$
$25.6 / 30.0$	$17.8 / 19.6$	$14.0 / 17.0$	$13.1 / 14.0$	$8.4 / 9.5$
$32.0 / 38.0$	$23.3 / 25.7$	$18.0 / 21.0$	$17.2 / 18.0$	$10.3 / 12.5$
$48.0 / 54.0$	$33.5 / 36.9$	$25.0 / 30.0$	$25.0 / 27.0$	$17.0 / 19.0$
$61.5 / 74.0$	$45.8 / 50.4$	$36.0 / 40.0$	$34.1 / 37.0$	$22.0 / 26.0$
64.0	42.0	32.9	23.0	18.0

Additional constructions available - check with the factory for details All figures referenced are nominal

Construction:

Center Conductor: Stranded silver plated copper
Dielectric: Expanded PTFE tape
Inner Braid: Flat silver plated copper strip
Inter layer: Aluminum polyester or polyimide tape
Outer Braid: Round silver plated copper
Jacket: FEP, translucent colors, solid colors or clear

Operating temperature $-55+200^{\circ} \mathrm{C}$
Velocity of Propagation 80\%
Impedence 50 Ohms
Capacitance $25.0 \mathrm{pF} / \mathrm{ft}$
Shielding Effectiveness <-95 dB

Center conductor diameter
Dielectric diameter
Diameter over inner braid
Diameter over interlayer
Diameter over outer braid
Overall diameter
Weight(lbs/mft)
Bend radius
Attenuation ($\mathrm{dB} / 100 \mathrm{ft}$)
400 MHz
1 GHz
2 GHz
3 GHz
5 GHz
10 GHz
18 GHz
Cut-off frequency (Ghz)

LL142STR	LL270STR	LL450STR	LL475STR
$.051^{\prime \prime}\left(7 / .017^{\prime \prime}\right)$	$.068^{\prime \prime}\left(7 / .023^{\prime \prime}\right)$	$.133^{\prime \prime}\left(7 / .048^{\prime \prime}\right)$	$.155^{\prime \prime}\left(7 / .0553^{\prime \prime}\right)$
$.138^{\prime \prime}$	$.185^{\prime \prime}$	$.360^{\prime \prime}$	$.405^{\prime \prime}$
$.146^{\prime \prime}$	$.195^{\prime \prime}$	$.368^{\prime \prime}$	$.418^{\prime \prime}$
$.151^{\prime \prime}$	$.200^{\prime \prime}$	$.374^{\prime \prime}$	
$.167^{\prime \prime}$	$.220^{\prime \prime}$	$.394^{\prime \prime}$	$.435^{\prime \prime}$
$.195^{\prime \prime}$	$.270^{\prime \prime}$	$.450^{\prime \prime}$	$.475^{\prime \prime}$
44	70	165	180
$1.0^{\prime \prime}$	$1.4^{\prime \prime}$	$2.2^{\prime \prime}$	$2.4^{\prime \prime}$
Typ / Max	Typ $/ \mathbf{M a x}$	Typ $/ \mathbf{M a x}$	Typ $/ \mathbf{M a x}$
$5.7 / 7.0$	$4.3 / 4.5$	$2.1 / 2.3$	$1.9 / 2.2$
$8.9 / 11.1$	$6.7 / 7.3$	$3.5 / 3.7$	$3.1 / 3.4$
$12.4 / 15.6$	$9.6 / 10.6$	$5.1 / 5.6$	$4.7 / 5.1$
$14.9 / 19.0$	$12.0 / 13.4$	$6.3 / 7.1$	$5.8 / 6.4$
$20.1 / 24.0$	$15.8 / 18.0$	$8.4 / 10.0$	$7.5 / 8.0$
$28.8 / 35.0$	$22.5 / 26.0$	$12.4 / 13.3$	$11.4 / 12.5$
$39.4 / 43.0$	$31.1 / 36.0$	$-/-$	$-/-$
32.0	24.0	12.8	11.0

